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Supporting Information Text

1. Anomalous Diffusion Models

Fractional Brownian Motion. A FBM process x(t) is characterized by the following properties

• is a zero mean process 〈x(t)〉 = 0.

• starts at x(0) = 0.

• has stationary increments
x(t)− x(0) d= x(t+ ∆)− x(∆) ∀∆ , [1]

where d= denotes equality in distribution. A consequence is that the expectation of any function f of an increment is
invariant to time translation of that increment; that is,〈

f
(
x(t)− x(0)

)〉
=
〈
f
(
x(t+ ∆)− x(∆)

)〉
. [2]

Together with the previous property, this implies〈(
x(t1)− x(t2)

)2〉 =
〈(
x(t1 − t2)

)2〉
, [3]

an identity which will be used shortly.

• has the probability density function (PDF) of the form (1)

P (x, t) = 1√
4πDHt2H

exp(− x2

4DHt2H
). [4]

with 〈x(t)〉 = 0, and 〈x(t)2〉 = 2DHt2H . Here, H is known as the Hurst exponent that is related to the anomalous diffusion
exponent α as H = α/2. If 0 < H < 1/2 the process is subdiffusive, if H = 1/2 the process is fully Brownian, and if
1/2 < H < 1 the process is super-diffusive. The second moment or the ensemble-averaged mean-squared displacement (e-MSD)
of the FBM process is then

〈x2(t)〉 = 2DHt2H . [5]

With this definition and using a binomial expansion and using stationarity and zero mean properties of the last term on the
second line (〈x2(t1)− x2(t2)〉 = 〈x2(t1 − t2)〉 = 2DH(t1 − t2)2H), and finally using Eq. (5) for each term, the FBM process x(t)
has a covariance∗ of the form (2)

〈x(t1)x(t2)〉 = 1
2 〈x(t1)2 + x(t2)2 − (x(t1)− x(t2))2〉

= 1
2 〈x(t1)2 + x(t2)2 − (x(t1 − t2))2〉

= DH(t2H1 + t2H2 − |t1 − t2|2H).

[6]

It can be concluded from the covariance of equation Eq. (6) that the FBM process is self-similar

x(λt) d= λHx(t) . [7]

Note that H is also known as the self-similarity parameter. The FBM process (of which ordinary Brownian motion can be
considered a subset with H = 1/2) is the only Gaussian process that is both self-similar and stationary.

The time evolution of x(t) can be assumed to have the general form

x(t) =
∫ t

0
dt′ ξ(t′) , [8]

where ξ(t′) is called fractional Gaussian noise. Equivalently, in differential form

d

dt
x(t) = ξ(t) . [9]

∗Note 〈.〉 denotes expectation E(.) and since this is a zero-mean process that equals the covariance E(x(t1)x(t2)) = cov(x(t1), x(t2))
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This implies that the time correlation of the fractional Gaussian noise can be obtained by differentiating equation Eq. (6) with
respect to each of the time variables

〈ξ(t1)ξ(t2)〉 = d

dt1

d

dt2
〈x(t1)x(t2)〉

= −DH
d

dt1

d

dt2
|t1 − t2|2H

= DH
d

dt1

(
2H|t1 − t2|2H−1sgn(t1 − t2)

)
= DH

(
2H(2H − 1)|t1 − t2|2H−2 + 4H|t1 − t2|2H−1δ(t1 − t2)

)
= 2DHH(2H − 1)|t1 − t2|2H−2 ,

[10]

where δ(x) is the Dirac delta function and sgn(x) is the sign function. Here we have used the properties

d

dx
|x| = sgn(x) , [11]

d2

dx2 |x| =
d

dx
sgn(x) = 2δ(x) , [12]

sgn2(x) = 1 . [13]

Finally, note that in the final line of equation Eq. (6) we have assumed that 2H 6= 1 to eliminate the second term in parentheses
of the previous line. If instead we examine the case 2H = 1, only the second term remains, leaving

〈ξ(t1)ξ(t2)〉 = 2DHδ(t1 − t2) , [14]

which is the expected delta-correlated noise characterizing Brownian motion.

Discrete time FBM. Here we reconsider the above analysis from the perspective of a discretized time variable, as will be made use
of in the following section. From equation Eq. (6) the covariance for discrete-time increments of xt2 −xt1 and xs2 −xs1 is (3, 4)

〈(xt2 − xt1 )(xs2 − xs1 )〉 = DH((t2 − s1)2H − (t1 − s1)2H − (t2 − s2)2H + (t1 − s2)2H). [15]

Hence, assuming that particle is at x = 0 at time zero, the covariance of increments (xk+1 − xk) and (x1 − x0) is

〈(xk+1 − xk)(x1 − x0)〉 = DH(|k + 1|2H + |k − 1|2H − 2|k|2H). [16]

Note that for H = 1/2 (i.e., Brownian case) these increments are non-correlated and the process is not self-similar as we
expect. The increments of the FBM process are also called fractional Gaussian noise ξ, where ξ(k + 1) = xk+1 − xk defined on
increment of ∂t = 1 ( ∂x

∂t
= ξ(t)). Therefore, Eq. (16) is indeed the covariance of the fractional Gaussian noise 〈ξ(k + 1)ξ(1)〉.

One can rewrite Eq. (16) by factoring the k2H term

〈ξ(k + 1)ξ(1)〉 = DHk
2Hf(1/k), for k ≥ 1 [17]

where f(x) = (1− x)2H + (1 + x)2H − 2 (4). Using the Taylor expansion of f(x) at the origin (x = 1/k → 0) the covariance of
the fractional Gaussian noise is

γ(k) = 〈ξ(k + 1)ξ(1)〉 = 2DHH(2H − 1)k2H−2, [18]

with k ∈ {0, ..., N − 1} and γ(0) = 1. This is true only if t1 6= t2 (4).

Simulating a FBM process. A FBM process can be simulated using a circulant matrix embedding algorithm and using fractional
Gaussian noise ξ = (ξ1, ξ2, ..., ξN )T and its covariance matrix:

Γ = cov(ξ) =



1 γ(1) γ(2) . . . γ(N − 2) γ(N − 1)
γ(1) 1 γ(1) . . . γ(N − 3) γ(N − 2)
γ(2) γ(1) 1 . . . γ(N − 4) γ(N − 3)
...

...
...

. . .
...

...
γ(N − 2) γ(N − 3) γ(N − 4) . . . 1 γ(1)
γ(N − 1) γ(N − 2) γ(N − 3) . . . γ(1) 1

 .
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In order to simulate a FBM process x(t), we need to find the square root of the Γ matrix. Finding square roots of this
matrix is hard. Hence, a more convenient method often used is to embed this matrix Γ in a larger circulant matrix called C of
size 2M × 2M with M = 2N :

C =



1 γ(1) . . . γ(N − 1) 0 γ(N − 1) γ(N) . . . γ(2) γ(1)
γ(1) 1 . . . γ(N − 2) γ(N − 1) 0 γ(N − 1) . . . γ(3) γ(2)
...

...
. . .

...
...

...
...

. . .
...

...
γ(N − 1) γ(N − 2) . . . 1 γ(1) γ(2) γ(3) . . . γ(N − 1) 0

0 γ(N − 1) . . . γ(1) 1 γ(1) γ(2) . . . γ(N − 2) γ(N − 1)
γ(N − 1) 0 . . . γ(2) γ(1) 1 γ(1) . . . γ(N − 3) γ(N − 2)

...
...

. . .
...

...
...

...
. . .

...
...

γ(1) γ(2) . . . 0 γ(N − 1) γ(N − 2) γ(N − 3) . . . γ(1) 1


,

where the red box indicates the Γ matrix. Since the matrix C is circulant, it can be decomposed into C = FΛF∗ using Fourier
transform, where F is a unitary matrix and Λ is a diagonal matrix of eigenvalues of matrix C. F∗ denotes the conjugate
transpose of F and FF∗ = I. Therefore, FCF∗ = Λ. We can generate the matrix Λ using the eigenvalues (i.e., FFT coefficients
of C) (4):

Λ = diag(λ0, λ1, . . . , λ2N−1) λm =
2N−1∑
j=0

Cj exp (2πi jm2N ), j,m = 0, . . . , 2N − 1 [19]

with Cj the (j + 1)th elements of the first row of C matrix, i =
√
−1, and F is defined as:

F (j,m) = 1√
2N

exp (−2πi jm2N ). j,m = 0, . . . , 2N − 1 [20]

To find the square roots of matrix C, we can write C = SS∗ with S = FΛ1/2F∗ and Λ1/2 = diag(λ1/2
0 , λ

1/2
1 , · · · , λ1/2

2N−1) (5).
The last step to simulate a FBM process is to multiply matrix S with a vector V with i.i.d. standard normal elements and take
the first N elements corresponding to the fractional Gaussian noise vector ξ.

Continuous Time Random Walk. A continuous time random walk (CTRW) process is a class of anomalous diffusion with a
combination of random walks in space and time. Consider a test particle diffusing with a CTRW behavior, where x(t) denotes
the position of the particle at time t. The particle will make a random jump of distance ∆xi = x(ti)− x(ti−1) after a waiting
time of τi = ti − ti−1 in its previous site. After the jump, the process is renewed. For a CTRW process, we assume (6)

• The spatial step length ∆xi, i = 1, 2, · · · are i.i.d. random variables drawn from the PDF λ(∆x)

• The waiting times τi, i = 1, 2, · · · are i.i.d. random variables drawn from the PDF ψ(τ)

• The waiting times τi, i = 1, 2, · · · and step lengths ∆xi, i = 1, 2, · · · are independent.

Therefore, the joint probability distribution function ϕ(∆x, τ) (known as the jump PDF) can be written as ϕ(∆x, τ) =
ψ(τ)λ(∆x) (6), where the distribution of the spatial jump and waiting times are (7):

λ(∆x) =
∫ ∞

0
dt ϕ(∆x, τ), [21]

ψ(τ) =
∫ +∞

−∞
dx ϕ(∆x, τ). [22]

We will now focus only on the subdiffusive CTRW process which is more relevant to the anomalous diffusion of gold nanorods
in the liquid cell environment. For a subdiffusive CTRW process, the waiting times τ are drawn from a heavy-tailed power-law
distribution with the asymptotic behavior

lim
τ→∞

ψ(τ) = τα0
τ1+α . [23]

Here, τ0 is a scaling factor with the dimension of time. The average waiting time in the subdiffusive case (α < 1) diverges; that
is 〈τ〉 =

∫∞
0 τψ(τ)dτ → ∞. The power-law distributed waiting times can be thought of as a physical picture where tracer

particles are continually caught in potential wells with various depths (8, 9). The spatial step lengths are assumed here only to
have zero mean and finite variance.

As mentioned in the main text, for a Brownian particle, the ensemble-averaged MSD (e-MSD) 〈x2(t)〉 grows linearly in time.
However, for a subdiffusive CTRW process of total duration T , the e-MSD is (10)

〈x2(T )〉 ∼ Tα . [24]
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To obtain this form, we begin by considering the ensemble average of time averaged of MSD (et-MSD), 〈δx2〉, over an ensemble
of independent trajectories of duration T

〈δx2(∆;T )〉 = 1
T −∆

∫ T−∆

0
〈(x(t+ ∆)− x(t))2〉dt. [25]

The integrand can be expressed in terms of the variance of the jump length 〈δx2〉 and the average number of jumps n(t, t+ ∆)
in the time span of (t, t+ ∆) as (10, 11):

〈(x(t+ ∆)− x(t))2〉 = 〈δx2〉〈n(t, t+ ∆)〉
= 〈δx2〉

[
〈n(0, t+ ∆)〉 − 〈n(0, t)〉

]
.

[26]

For a subdiffusive CTRW process, the average number of jumps for a specified time interval corresponds to a fractional Poisson
process with 〈n(0, t)〉 ∼ tα. Therefore,

〈δx2(∆;T )〉 ∼ 〈δx
2〉

T −∆

∫ T−∆

0
dt′
[
〈n(0, t′ + ∆)〉 − 〈n(0, t′)〉

]
= 〈δx2〉
T −∆

∫ T−∆

0
dt′
[
(t′ + ∆)α − t′α

]
= 〈δx2〉T

1+α −∆1+α − (T −∆)1+α

(1 + α)(T −∆) .

[27]

In the limit ∆� T :

〈δx2(∆;T )〉 ∼ Dα
∆

T 1−α , [28]

which shows a linear dependence on time delay ∆ despite the nonlinear anomalous diffusive behavior with the measurement
time T . The fact that the measurement time T shows up in the eq. (28) shows the aging behavior of the subdiffusive CTRW
process. This suggests that as the CTRW process goes on in time, the t-MSD becomes smaller, meaning that it is more likely
that longer trapping times would happen, which stalls the progress of x(t) (1). Moreover, we observe a drastic difference
between the subdiffusive CTRW and Brownian motion: that the t-MSD δx2(∆;T ) and e-MSD 〈x2(T )〉 do not converge towards
agreement even in the limit of infinite sampling, a condition known as weak ergodicity breaking

〈x2(T )〉 6= lim
T→∞

δx2(∆;T ). [29]

This ergodicity-breaking nature of the CTRW process results in scatter in t-MSD δ2(∆) vs. time delay ∆ curves.

2. Waiting Time Distribution

Subdiffusive behavior in the context of a CTRW process arises as a consequence of a heavy-tailed waiting time distribution,
characterized by the asymptotic behavior described in Equation Eq. (23). In Fig. S12 we have plotted the distribution of
waiting times for one of the trajectories, collected at a dose rate of 49 e−/Å2s, by counting the time required for displacements
larger than a radial threshold, where displacements below this radius are considered immobile. This figure shows the waiting
time distributions for radial thresholds of 20 and 100 nm. The choice of the cut-off radius has a significant effect in the
power-law exponent of the waiting time distribution. For small values (≤ 20 nm) the distribution has a power-law tail of
∼ −2.0, suggesting that the α→ 1 corresponding to a Brownian case. However, as discussed in the text, displacements smaller
than the length of the nanorods (≤ 60 nm) could also mean that the nanorods got trapped with the head or tail on the same
pinning site. Therefore, we have also plotted the distribution for a radial threshold value of 100 nm. However, the number of
data points are insufficient to draw any firm conclusions, but the apparent asymptotic behavior in the 100 nm case may be an
indication of subdiffusive behavior.

3. Statistical Analysis

Two-sided t-test and p-value Calculation. Two-sided t-test is used here to test for the null hypothesis that two independent
classes of diffusion have identical probability. The p-values were calculated using ttest_ind_from_stats package from SciPy,
which considers the mean, number of samples, and the standard deviation of predicted probability for FBM and CTRW classes
of diffusion at any dose rate.
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p-Variation Test. The p-variation test introduced in the Methods section generalizes the concept of the total variation V , in
which the increments (i.e., particle displacements) are summed over the entire trajectory

V [x(t)] = lim
n→∞

2n∑
j=1

∣∣x(j/2n)− x((j − 1)/2n
)∣∣ . [30]

Here we have expressed the total variation as a functional of the trajectory x(t) and rescaled the duration of this trajectory to
the interval t ∈ [0, 1]. The total variation V [x(t)] measures the total length of the path traced out by x(t) and it is defined
in the limit of n→∞. In this limit, the total variation of Brownian motion is infinite as will be shown momentarily. This
is a simple example of the “coastline paradox” described by Benoit Mandelbrot in the context of self-similarity and fractal
dimension: the total length of a continent’s coastline depends on the size of the ruler used to measure it and, in principle, can
be infinite for an infinitesimal ruler (12).

The p-variation V (p)
n (t) generalizes the concept of total variation by exponentiating each increment (see Fig. S4 for the

increments size at each n) by p before summing (13)

V (p)
n (t) =

(2n)t∑
j=1

∣∣x(j/2n)− x((j − 1)/2n
)∣∣p . [31]

Note that V (p)
n (t) is defined for finite n and on any interval of the trajectory [0, t].

We consider now the p-variation of fractional Brownian motion (FBM). The variance of FBM in Eq. (5) can be rewritten as

x(t+ δ)− x(t) ∼ δH , [32]

where the symbol “∼” indicates expectational proportionality of the Euclidean norm. Together with the the stationarity
property of FBM, this allows equation Eq. (31) to be evaluated to

V (p)
n (t) ∼

(2n)t∑
j=1

(2−n)pH = t(2n)1−pH . [33]

Thus, in the limit of n→∞ the p-variation falls into three regimes depending on the choice of p.

lim
n→∞

V (p)
n (t) =


+∞ if p < H−1

t if p = H−1

0 if p > H−1
. [34]

Earlier it was stated that the total variation of Brownian motion is infinite. This can be identified with the first case above, in
which H = 1/2 for Brownian motion and p = 1 for the total variation. We can also see that the quadratic variation (p = 2) of
Brownian motion is finite and proportional to t; that is, limn→∞ V

(2)
n (t) ∝ t.

4. MotionNet (MoNet) Architecture, Training, and Inference

Input. For diffusion classification, MoNet is trained on 10, 000 simulated trajectories from three classes of Brownian, subdiffusive
FBM, and subdiffusive CTRW. The steps on how to sample trajectories from these processes have been discussed in the previous
sections. For FBM, the range of α considered was 0.2 ≤ α ≤ 0.96. For CTRW the range of α considered was 0.1 ≤ α ≤ 0.99.
For α prediction for both FBM and CTRW processes, MoNet is trained on 3, 000 simulated trajectories for each task.

For the task of classifying the trajectories into their diffusion class and predicting the α exponent for CTRW process,
the input to MoNet is the vector of discrete-time increments of the simulated trajectories. Given a batch of N simulated
trajectories {x1, x2, · · · , xN}, where xi = (xi,0, xi,1, · · · , xi,299)|Ni=1, the vector of discrete-time increments is defined as
dxi = (xi,1 − xi,0, · · · , xi,299 − xi,298) = (dxi,1,dxi,2, · · · ,dxi,299). It has been reported previously that for the α prediction
task (in case of FBM processes) learning the velocity autocorrelation of a trajectory is more effective that the trajectory
increments (14). Hence, we followed the same procedure and used the velocity autocorrelation of the discrete-time increments
vector as the input for the MoNet with autocorrelation defined as dxi ∗ dxi

T , where ∗ denotes convolution and dxTi is the
transpose of vector dxi.

Architecture. Fig. S4 and S5 show the architecture of MoNet, adapted from Granik et. al. (14) and modified based on the
p-variation method introduced in the previous section. We use the same architecture universally regardless of the task
(regression/classification). The architecture of MoNet comprises of 4 layers where the first layer consists of 6 convolutional
sublayers (f11, f12, f13, f14, f15, f16) that are applied on the input data in parallel. The first 5 convolutuonal sublayers are
three layers deep with relu activation units (relu(·) = max(·, 0) for rectification of the feature map), batch normalization
(normalizing the responses across features map), and max pooling (finding the maximum over a local neighborhood). The
number of filters applied in all of these sublayers are set to 32. After training, each of these filters capture a certain distinct
pattern along the trajectory (e.g., descending, ascending patterns). The diversity among the filters are typically ensured via
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random initialization of the filters and regularization techniques such as batch normalization and drop out. The filter sizes
are k = 3, 4, 2, 10, and 20 respectively for the five convolutional sublayers to capture the local dynamics of trajectories in
several spacial resolutions. The convolutional sublayers also differ in their dilation factor (i.e., the number of steps that filters
skip). Following p-variation we chose dilation factors that span the trajectory via steps of size 2n. The last convolutional
sublayer, f16 augments the model using large filter sizes of length 20 without any dilation. The output of the convolutional
sublayers are fed into two fully connected layers of size 512 and 128 (f2 and f3, respectively). The final layer of MoNet (f4) is
set based on the prediction task. For the anomalous classification task, the last layer is a dense layer of size 3 (corresponding to
the three classes of diffusion) with a Softmax activation. Softmax function maps the output of the layer 3 after applying the
linear transformation g(dxi; W) = [g1(dxi; W), g2(dxi; W), g3(dxi; W)], where W denotes all the parameters in MoNet, to
the predicted probability of output classes P defined as:

P(dxi; W) = eg(dxi;W)∑C

c=1 e
gc(dxi;W)

, [35]

where C = 3 is the number of classes and P(dxi; W) = [P1(dxi; W), P2(dxi; W), P3(dxi; W)].
For the regression task of finding the α exponent, a dense layer of size 1 with a Sigmoid activation is used in the last layer

to capture the output. Sigmoid function maps the output g(dxi; W) to a variable between 0 and 1 (i.e., the predicted value of
α), and is defined as:

Sp(dxi; W) = 1
1 + e−g(dxi;W) . [36]

The overall architecture of the neural net shown in fig. S4 can be written as F(dxi; W) = f4 ◦ f3 ◦ f2 ◦ f1(dxi; W) where
f1 = [f11, f12, f13, f14, f15, f16] is the concatenation of the output of all the 6 convolutional sublayers applied in the first layer
(Fig. S5).

Loss Function. For classification task, the loss function is a categorical cross-entropy loss function, L, defined as:

L(W) = 1
N

N∑
i=1

DKL(Qi||P(dxi; W)) = − 1
N

N∑
i=1

C∑
c=1

qi,c logPc(dxi; W), [37]

where Qi = [qi,1, qi,2, qi,3] is the ground truth probability of each class for a trajectory xi. Note that qi,c is 1 if the sample i is in
class c and 0 otherwise. Pc(dxi; W) is the output predicted probability that sample i is in class c. DKL is the Kullback-Leibler
divergence between two distributions Pi and Qi.

For α prediction, the loss function is a mean squared error (MSE) L defined as:

L(W) = 1
N

N∑
i=1

(Si − Spi )2, [38]

with Spi , the predicted value of α by MoNet (the output) and Si, the ground truth value of α for sample i.

Training. All the parameters of the network including the filters in the first layer and the weight matrices in the following layers
were trained by back-propagating the derivative of the loss function with respect to the parameters W using a stochastic
gradient descent (15). MoNet is trained using the ADAM optimizer with an adaptive learning rate that starts from 10−5.

Validation. The validation accuracy and validation MSE are evaluated on a set of hold-out unseen simulated data with the
same size as the training data (i.e., 10, 000 for classification and 3, 000 for α prediction).

Inference. For testing our experimental data (40 trajectories shown in Fig. S1), we treated x and y coordinates independently.
For all trajectories (xi,1, xi,2, · · · , xi,Ti)|30

i=1, we tested each 300-frame intervals separately by dividing the trajectory into
m = bT/300c segments. The final results where then reported as the mean value of the output (probability in case of
classification and α value in case of α prediction) averaged over all 300-frame segments and x and and y coordinates. See
Fig. S10 and S13 for the prediction outcomes for the 40 trajectories presented in Fig. S1.

5. Performance of MoNet in classification and α prediction

In order to show the effect of trajectory length on the performance of MoNet in both classification and α prediction tasks, we
have plotted Fig. S6 where we report validation accuracies and MSE’s averaged over 320 hold-out simulated trajectories. Fig. S6
shows that the accuracy increases and the MSE decreases, with increasing the trajectory length. However, the validation
accuracy of MoNet for classification saturates around 88.5%± 2.3 and validation MSE saturates over 0.02± 0.002 for CTRW,
and 0.002± 0.0002 for FBM α prediction, for trajectories longer than 300 .

In case of α prediction, estimating α based on a single trajectory and without having an ensemble average is a challenging
task for CTRW processes. Therefore, as expected, the error associated with α prediction for CTRW processes is higher than
the case of FBM processes (Fig. S6a).
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6. Performance of MoNet in classifying the behavior of hybrid trajectories

In order to show the power of MoNet in classifying the behavior of hybrid trajectories and predicting their corresponding
α exponent, we have simulated interleaved trajectories where the diffusion mechanism randomly switches from one class to
another class in each segment (Fig. S13a). The t-MSD curve, Fig. S13, for this hybrid interleaved trajectory is sublibear with a
slope of 0.76. The p-variation test result shown in Fig. S13c may suggest that the dominant behavior is CTRW as the quadratic
variation curves seem to be independent of the time step size ∆t. This is while the behavior of the trajectory is 50% FBM and
50% CTRW with random permutations. This particular example shows that both t-MSD and p-variation are limited when it
comes to trajectories with a hybrid behavior. Fig. S13e shows the ground truth class of diffusion along with MoNet predictions
for each segment of the trajectory. The overall behavior of the trajectory can be determined by averaging the predictions over
all segments of the trajectory. The results shown in the bar plot of Fig. S13f shows that MoNet predicts that the behavior is
50% CTRW and 36% FBM confirming that MoNet outperforms canonical methods in classifying the behavior of interleaved
trajectories. Additionally, Fig. S13d shows that the slope of the t-MSD curve overestimates the value of α for this hybrid
trajectory (0.76 vs. 0.6), while MoNet’s prediction (0.56± 0.15) is closer to the ground truth value.
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Fig. S1. Trajectories of 40 gold nanorods in a range of dose rates from 2 to 49 e−/Å2s over time (shown as color bar). Scale bars show 50 nm. Electron beam dose rate
values are shown on the top left corner of each trajectory.
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Fig. S2. Time-averaged mean squared displacement (t-MSD) vs. time delay, ∆, for all trajectories of Fig. S1 in range of dose rates from 2 to 49 e−/Å2s.
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Fig. S3. Anomalous diffusion coefficients obtained from t-MSD curves of Fig. S2 fitted to a power law of Dα∆α for time delays ∆ ≤ 0.25 s.
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Fig. S4. a) Illustrative description of increments size for each given n in p−variation method, V pn (t) b) Schematic showing the Motion Net (MoNet) neural network architecture.
c) An example of a dilated causal convolution sublayer f11 used in MoNet with a filter size of k = 3 and dilation factors of d = 20, 21, 22 similar to the p-variation concept
shown of panel (a).
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Fig. S5. Architecture of the 4-layered MoNet model with 3 example convolutional sublayers (out of the 6 sublayers used in the first layer) with filter sizes of 3, 2, and 20. The
input of the network is the increments of a trajectory, dx = (dx1, dx2, · · · dx299). In the first layer (f11, · · · , f16) this input is convolved with 32 different filters of different
sizes and different dilation factors (see Fig. S4). Here, we showed the example for filters of sizes: k = 3 with dilations of d = 1 (red), 2 (blue), and 4 (green), k = 2 with
dilations of d = 1 (red), 2 (blue), and 4 (green), and k = 20 with dilation of 1 (red). The output of each dilation is normalized using batch normalization. The resulting feature
tensors are then pooled (maximum row within tensor), resulting in 32 × 1 vector. Similar operation is performed on all sublayers of the first layer shown in Fig. S4. The result of
all convolutional sublayers f11, f12, f13, f14, f15, and f16 were then concatenated into a vector of size 192 × 1 which is the input for the second layer. The second and third
layers are dense fully connected layers, taking features from the first layer. The final layer is chosen based on the prediction task; dense layer of size 3 with softmax activation
function for the classification and dense layer of size 1 with sigmoid activation function for the α prediction.
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Fig. S6. a) Validation accuracy of MoNet in classifying the diffusion behavior on simulated test data. b) Validation mean squared error (MSE) associated with the α prediction
for CTRW (gray) and FBM (black) processes. Error bars indicate standard deviation.
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Fig. S7. Pie charts showing the predicted probability of three classes of diffusion by MoNet for trajectories shown in Fig. S1.
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Fig. S8. p-values calculated using two-sided t-test at each dose rate. The results supports the presences of predominantly FBM behavior at low dose rates (p< 5 × 10−7),
predominantly CTRW behavior at high dose rates (p< 3 × 10−21), and coexistence of both behaviors at the dose rate of 15 e−/Å2s, where we cannot reject the null
hypothesis that the probability of FBM and CTRW classes are equal (p= 0.86).
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Fig. S9. Quadratic variation test, V 2
n (t), results for trajectories shown in Fig. S1.
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Fig. S10. Distribution of displacements, δx(tfr) (where tfr is equal to 1/frame rate) for the trajectories shown in Fig. S1 with a power-law tail fit with an exponent of −2.0.
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Fig. S11. Anomalous exponent α predicted by MoNet for CTRW processes and FBM processes (α = 2H, where H is the Hurst exponent of FBM processes) plotted as a
function of dose rate and compared to the α values estimated from the t-MSD curves of Fig. S2 for time delays ∆ ≤ 0.25 s.
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Fig. S12. Distribution of waiting times, τ , for an example trajectory at a dose rate of 49 e−/Å2s for two different cut-off radius values of 20 and 100 nm. The black line indicates
a power-law tail fit with an exponent of −2.
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Fig. S13. a) A simulated interleaved trajectory with a hybrid behavior switching randomly between subdiffusive FBM and subdiffusive CTRW behavior (α = 0.6). b)
Corresponding t-MSD plot for the simulated hybrid trajectory in (a). The slope of the t-MSD curve is sublinear with an α exponent of 0.76. c) p-variation test results for the
hybrid trajectory in (a). d) α values predicted by MoNet for each segment of the trajectory compared to the ground truth value (0.6) and over estimated value based on the
slope of the t-MSD curve (0.76). e) Comparison of the ground truth class of diffusion with MoNet predictions for the dominant behavior. f) Bar plot showing the average behavior
of the system along the entire length of the trajectory confirming the presence of both FBM and CTRW behavior in the simulated trajectory.
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Movie S1. Compressed and subsampled LCTEM video showing an AuNR motion at dose rate of 2 e−/Å2s.

Movie S2. Compressed and subsampled LCTEM video showing an AuNR motion at dose rate of 15 e−/Å2s.

Movie S3. Compressed and subsampled LCTEM video showing an AuNR motion at dose rate of 20 e−/Å2s.

Movie S4. Compressed and subsampled LCTEM video showing an AuNR motion at dose rate of 30 e−/Å2s.

Movie S5. Compressed and subsampled LCTEM video showing an AuNR motion at dose rate of 49 e−/Å2s.

References

1. R Metzler, JH Jeon, AG Cherstvy, E Barkai, Anomalous diffusion models and their properties: Non-stationarity,
non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).

2. J Picard, Representation formulae for the fractional brownian motion in Séminaire de probabilités XLIII. (Springer), pp.
3–70 (2011).

3. T Kaarakka, P Salminen, On fractional ornstein-uhlenbeck processes. Commun. on stochastic analysis 5, 8 (2011).
4. T Dieker, Ph.D. thesis (Masters Thesis, Department of Mathematical Sciences, University of Twente) (2004).
5. O Banna, Y Mishura, K Ralchenko, S Shklyar, Fractional Brownian Motion: Approximations and Projections. (John

Wiley & Sons), (2019).
6. G Germano, M Politi, E Scalas, RL Schilling, Stochastic calculus for uncoupled continuous-time random walks. Phys. Rev. E

79, 066102 (2009).
7. R Metzler, J Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. reports

339, 1–77 (2000).
8. E Barkai, Y Garini, R Metzler, of single molecules in living cells. Phys. Today 65, 29 (2012).
9. Y Meroz, IM Sokolov, J Klafter, Test for determining a subdiffusive model in ergodic systems from single trajectories.

Phys. review letters 110, 090601 (2013).
10. Y He, S Burov, R Metzler, E Barkai, Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett.

101, 058101 (2008).
11. S Burov, JH Jeon, R Metzler, E Barkai, Single particle tracking in systems showing anomalous diffusion: the role of weak

ergodicity breaking. Phys. Chem. Chem. Phys. 13, 1800–1812 (2011).
12. Mandelbrot, B., How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 156,

636–638 (1967).
13. LC Rogers, Arbitrage with fractional brownian motion. Math. Finance 7, 95–105 (1997).
14. N Granik, et al., Single-particle diffusion characterization by deep learning. Biophys. journal 117, 185–192 (2019).
15. MD Zeiler, R Fergus, Visualizing and understanding convolutional networks in European conference on computer vision.

(Springer), pp. 818–833 (2014).

22 of 22 Vida Jamali, Cory Hargus, Assaf Ben-Moshe, Amirali Aghazadeh, Hyun Dong Ha, Kranthi K. Mandadapu, and A. Paul Alivisatos


	Anomalous Diffusion Models 
	Waiting Time Distribution
	Statistical Analysis
	MotionNet (MoNet) Architecture, Training, and Inference
	Performance of MoNet in classification and bold0mu mumu  prediction
	Performance of MoNet in classifying the behavior of hybrid trajectories

