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Diffusive transport is characterized by a diffusivity tensor which may, in general, contain both a
symmetric and an antisymmetric component. Although the latter is often neglected, we derive Green-Kubo
relations showing it to be a general characteristic of random motion breaking time-reversal and parity
symmetries, as encountered in chiral active matter. In analogy with the odd viscosity appearing in chiral
active fluids, we term this component the odd diffusivity. We show how odd diffusivity emerges in a chiral
random walk model, and demonstrate the applicability of the Green-Kubo relations through molecular
dynamics simulations of a passive tracer particle diffusing in a chiral active bath.
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Introduction.—Among the historic successes of non-
equilibrium statistical mechanics is the explanation of
macroscopic transport phenomena in terms of microscopic
fluctuations occurring at equilibrium [1–5]. More recent
efforts aim to generalize this framework to include systems
whose steady states are not Boltzmann distributed, and
whose dynamics are not determined by Hamiltonian-
conserving forces. A major impetus for this generalization
is the study of active matter, i.e., systems composed of
particles that are propelled by microscopic driving forces
and thus maintained out of equilibrium.
Chiral active matter is composed of particles driven by

microscopic torques and may be synthetic, as in the case of
active colloids [6–9], or biological, as in the case of certain
bacteria, algae, and spermatozoa [10–12]. Such systemshave
been shown to exhibit emergent transport behavior reminis-
cent of their equilibrium counterparts, yet with striking
differences. For instance, chiral active fluids may exhibit
Newtonian constitutive behavior, but with a novel viscosity
coefficient termed the odd (or Hall) viscosity emerging as a
consequence of breaking time reversal and parity symmetries
at the level of stress fluctuations [13–16]. In this Letter we
examine an analogous quantity appearing in the context of
diffusive transport.
In dilute solutions, Fick’s law posits the linear constit-

utive relation

J ¼ −D · ∇C ð1Þ

between the diffusive flux J and the concentration gradient
∇C, with D being a rank-two diffusivity tensor. In general
D may contain both a symmetric and antisymmetric part.
We term the latter the “odd diffusivity,” emphasizing its
connection to odd viscosity. Just as odd viscosity generates
normal stresses perpendicular to shear flow, odd diffusivity

generates fluxes perpendicular to concentration gradients.
Like odd viscosity [13–18], we will show odd diffusivity to
emerge as a consequence of breaking time-reversal and
parity symmetries at the level of microscopic fluctuations.
For simplicity, we examine odd diffusivity in isotropic

systems. As there exists no rank-two tensor in three
dimensions which is both isotropic and antisymmetric
[14] we restrict our attention to two-dimensional diffusion,
where the diffusivity tensor takes the form

Dij ¼ Dkδij −D⊥ϵij ¼
�
Dk −D⊥
D⊥ Dk

�
: ð2Þ

Here, δij ¼ δji is the symmetric Kronecker delta and ϵij ¼
−ϵji is the antisymmetric Levi-Civita permutation tensor.
Dk is the ordinary isotropic diffusivity coefficient driving
flux from regions of high to low concentration while D⊥
is the odd diffusivity driving flux in the perpendicular
direction [as in Fig. 1(a)]. Combining Eqs. (1) and (2) with
the continuity equation ∂tC ¼ −∇ · J yields the diffusion
equation

∂tC ¼ Dk∇2C; ð3Þ

which is unaffected by the divergence-free fluxes produced
by D⊥. Thus, while D⊥ may influence C in the presence of
boundary conditions involving fluxes (e.g., impermeable
obstacles, see Supplemental Material [19], Sec. A.1), D⊥
cannot affect C for boundary conditions involving solely
the concentration.
Past studies of odd diffusivity have generally been

limited to equilibrium systems, most commonly systems
of charged particles in magnetic fields. Such systems
acquire an antisymmetric component of both the diffusivity
tensor and the mobility tensor, which describes the current
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response to an electric field. This is the basis of the Hall
effect, and has consequences for the transport of confined
plasmas and cosmic rays [20–27]. Odd diffusivity has also
been recognized in certain mathematical models of chiral
random walks [28,29], and in convection-diffusion proc-
esses in chiral porous media [30].
In this Letter we suggest a unifying framework within

which to understand these phenomena, which extends
beyond equilibrium. We begin by asking the following:
given that the existence of odd diffusivity is compatible
with the macroscopic theory of diffusion, what microscopic
conditions are necessary for it to appear? Through deriving
a Green-Kubo relation for the odd diffusivity, we will show
that it emerges in systems breaking time-reversal and parity
symmetries, as characterized by chiral random motion of
particle trajectories. Odd diffusivity is thus characteristic of
a broad range of diffusive processes, and of particular
interest for out-of-equilibrium systems such as chiral active
matter, where time-reversal symmetry can be broken by
microscopic driving forces. We validate the derived Green-
Kubo relations exactly for a model chiral random walk and
numerically in active matter simulations, demonstrating
good agreement with direct measurements of the flux in
response to an imposed concentration gradient.

Green-Kubo relations.—We now proceed to obtain
Green-Kubo relations for Dij. We follow an approach
similar in spirit to the celebrated work of Einstein,
Smoluchowski, and others [31,32], which connected
molecular-scale Brownian motion with the macroscopic
diffusion equation (3), and we will rely on similar argu-
ments about the separation of timescales. However, because
the odd diffusivity D⊥ does not contribute to Eq. (3), such
an approach can yield no information about D⊥. The same
is true when taking as a starting point the Onsager
regression hypothesis [1,2,33], itself formulated upon
Eq. (3), as in a recent derivation of Green-Kubo relations
for the odd viscosity [14]. Accordingly, rather than con-
sidering the time evolution of the concentration via the
diffusion equation (3), we will instead directly examine the
microscopic basis of the fluxes appearing in the constitutive
law (1), similar to the route taken in linear response theory
[34]. In doing so, however, we will not require any linear
response relation between the diffusivity and the mobility.
We begin by considering a dilute solution of particles

undergoing random motion, e.g., due to collisions with a
solvent bath. Let fðr; v; tÞ indicate the probability density
of finding a particle at position r with velocity v at time t.
The local, instantaneous flux Jðr; tÞ is then defined as

Jðr; tÞ ¼
Z

dvfðr; v; tÞv: ð4Þ

Let us now consider the subensemble of all single-
particle trajectories compatible with the conditions
rαðtÞ ¼ r and vαðtÞ ¼ v, where α is an index over trajecto-
ries. As particles cannot be created or destroyed, continuity
requires that

fðr; v; tÞ ¼ hfðrαðt − τÞ; vαðt − τÞ; t − τÞirαðtÞ¼r
vαðtÞ¼v

; ð5Þ

where h·irαðtÞ¼r
vαðtÞ¼v

denotes an average over all trajectories

leading into point r with velocity v at time t. Suppose
there exists a correlation timescale τc, such that for τ ≫ τc a
particle’s velocity vαðtÞ is uncorrelated with its earlier value
vαðt − τÞ and thus becomes distributed according to the
unconditional probability density function ϕðvÞ, which we
assume to be independent of t (stationary) and r (transla-
tionally invariant). Then, for τ ≫ τc, Eq. (5) factorizes to

fðr; v; tÞ ¼ ϕðvÞhCðrαðt − τÞ; t − τÞirαðtÞ¼r
vαðtÞ¼v

; ð6Þ

where the concentration Cðr; tÞ ¼ R
dvfðr; v; tÞ.

Let the timescale over which the system relaxes from a
state of nonuniform concentration be denoted τr, e.g.,
τr ≈ L2=Dk, for the macroscopic length L describing the
variation inCðr; tÞ. We now assume that τmay be chosen to
satisfy the separation of timescales

τc ≪ τ ≪ τr; ð7Þ

FIG. 1. Relationship between odd diffusivity and chirality of
particle trajectories in a left-turning random walk (Γ1 ¼ 1,
Γ2 ¼ Γ3 ¼ 0). (a) A linear concentration gradient induces a
uniform flux field (arrows) with a perpendicular component
due to D⊥. (b) Logarithmic spiral form of the position-velocity
correlation functions from Eqs. (25)–(26). The Green-Kubo
relations (13)–(14) specify that the x and y coordinates converge
to the two diffusivity coefficients as t → ∞, while the angle θ is
identical to that in (a), as annotated. (c) Random sample of 50
time-reversed trajectories Δrαð−tÞ satisfying either vαð0Þ ¼ v0êx
(indicated by →) or vαð0Þ ¼ −v0êx (indicated by ←) for t ∈
½0;Γ−1

1 � together with the subensemble-averaged trajectories
hΔrαð−tÞi→ and hΔrαð−tÞi← for t ∈ ½0;∞Þ.
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following Einstein, Smoluchowski, Kubo and others
[14,31–33,35]. With these assumptions, the subensem-
ble-averaged concentration appearing in Eq. (6) may be
approximated by expanding about r to first order and about
t to zeroth order

hCðrαðt − τÞ; t − τÞirαðtÞ¼r
vαðtÞ¼v

≈ Cðr; tÞ þ hrαðt − τÞ − rαðtÞirαðtÞ¼r
vαðtÞ¼v

· ∇Cðr; tÞ: ð8Þ

Noting the relationship between a particle’s displace-
ment and its velocity

rαðt − τÞ − rαðtÞ ¼ −
Z

τ

0

dt0vαðt − t0Þ ð9Þ

and inserting the results of Eqs. (6)–(9) into Eq. (4) yields

Jðr; tÞ ¼
Z

dvϕðvÞv

×

�
Cðr; tÞ −

Z
τ

0

dt0hvαðt − t0ÞirαðtÞ¼r
vαðtÞ¼v

· ∇Cðr; tÞ
�

¼ −
Z

τ

0

dt0hvðtÞ ⊗ vðt − t0Þi · ∇Cðr; tÞ; ð10Þ

with ⊗ indicating the dyadic product. The convective term
proportional to Cðr; tÞ vanishes under the assumption that
ϕðvÞ is unbiased, i.e., R dvϕðvÞv ¼ 0. The second equality
in Eq. (10) follows from the definition of the conditional
expectation. The condition rαðtÞ ¼ r has been dropped
due to the assumption of translational invariance; conse-
quently, the average in the final expression is taken over all
trajectories. Comparing with the constitutive relation (1),
we conclude

Dij ¼
Z

τ

0

dt0hviðtÞvjðt − t0Þi: ð11Þ

Invoking stationarity to set hviðtÞvjðt − t0Þi ¼ hviðt0Þvjð0Þi
and carrying out the limit τ → ∞ due to the requirement
τ ≫ τc yields the Green-Kubo relations

Dij ¼
Z

∞

0

dthviðtÞvjð0Þi: ð12Þ

These relations hold independently for each component of
the diffusivity tensor, including any antisymmetric part.
Considering the specific form of Dij in Eq. (2), we may
contract with δij and ϵij to obtain

2Dk ¼
Z

∞

0

dthviðtÞvjð0Þiδij

¼ lim
t→∞

hΔriðtÞvjð0Þiδij ¼ lim
t→∞

1

2t
hjΔrðtÞj2i; ð13Þ

2D⊥ ¼ −
Z

∞

0

dthviðtÞvjð0Þiϵij
¼ − lim

t→∞
hΔriðtÞvjð0Þiϵij: ð14Þ

The first equality in Eqs. (13) and (14) is of the usual
Green-Kubo form [33,35]. In the second equality the
integral has been carried out, permitting a geometric
interpretation of the two diffusion coefficients in terms
of the position-velocity correlation functions [as in
Fig. 1(b)]. The third equality in Eq. (13) is the well-known
relationship between Dk and the mean squared displace-
ment; note that no such relation exists for D⊥ due to its
absence from the diffusion equation (3).
The antisymmetric tensor ϵij in Eq. (14) projects out the

time-reversal-symmetric and even-parity part of the corre-
lation function, indicating that whereas Dk is even under
time reversal and parity inversion, D⊥ is odd under both
operations. Onsager’s reciprocal relations [1,2] similarly
require that transport coefficient tensors be symmetric as a
consequence of time-reversal symmetry. It should be noted,
however, that D⊥, being nondissipative, is not compatible
with entropic arguments pertaining to the reciprocal rela-
tions, an issue that was previously discussed in a Fokker-
Planck context [36,37]. The Green-Kubo relation (14)
provides, instead, a direct statement of how time-reversal
symmetry should be broken for odd diffusivity to appear.
In equilibrium systems, the diffusivity and the mobility

are connected by the Einstein relation. In such systems, the
Green-Kubo relation (14) may be shown from linear res-
ponse theory [34]. The derivation above shows that Eq. (14)
can be applied even to inherently nonequilibrium systems
such as active matter, where effective Einstein relations
may exist under special circumstances [38–42], but in
general need not. Consequently, odd diffusivity can arise
even in cases where the antisymmetric mobility vanishes
(as demonstrated in the Supplemental Material [19],
Sec. A.3 for a chiral active Brownian particle), or where
mobility has no physical meaning, as in cases of animal
navigation with a documented steering bias [43–47].
Chiral random walk.—To illustrate the microscopic

origins of D⊥ and Dk, consider a particle that moves at
a constant speed v0 and reorients by turning left, reversing
direction, or turning right at random intervals with fre-
quency Γ1, Γ2, and Γ3, respectively. Between these changes
in direction, the particle moves in a straight line.
We may understand the diffusive behavior of this model

by decomposing the probability density Pðx; y; tÞ of the
particle sitting at coordinates ðx; yÞ at time t into a sum of
joint probabilities associated with the four possible direc-
tions of motion: Pðx; y; tÞ ¼ P→ðx; y; tÞ þ P↑ðx; y; tÞ þ
P←ðx; y; tÞ þ P↓ðx; y; tÞ. By considering the continuity
of these joint probabilities, we arrive at the coupled master
equations [48]
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∂tP→ ¼ Γ1P↓ þ Γ2P← þ Γ3P↑ − γP→ − v0∂xP→; ð15Þ

∂tP↑ ¼ Γ1P→ þ Γ2P↓ þ Γ3P← − γP↑ − v0∂yP↑; ð16Þ

∂tP← ¼ Γ1P↑ þ Γ2P→ þ Γ3P↓ − γP← þ v0∂xP←; ð17Þ

∂tP↓ ¼ Γ1P← þ Γ2P↑ þ Γ3P→ − γP↓ þ v0∂yP↓; ð18Þ

where γ ¼ Γ1 þ Γ2 þ Γ3. Suppose we are interested in a
steady state in which concentration varies only in the x
direction. Then, from Eq. (4), we may define

JxðxÞ ¼ v0hP→ðxÞ − P←ðxÞi; ð19Þ

JyðxÞ ¼ v0hP↑ðxÞ − P↓ðxÞi; ð20Þ

and, upon subtracting Eqs. (18) from (16) and averaging,
obtain

∂tJyðxÞ ¼ 0 ¼ ðΓ1 − Γ3ÞJxðxÞ − ðγ þ Γ2ÞJyðxÞ: ð21Þ

Solving for the ratio JyðxÞ=JxðxÞ, we find

JyðxÞ
JxðxÞ

¼ D⊥
Dk

¼ Γ1 − Γ3

γ þ Γ2

: ð22Þ

Examining this expression we note that D⊥ ≠ 0 whenever
Γ1 ≠ Γ3, indicating a preference between left and right
turns, i.e., chirality of random motion.
We now consider the Green-Kubo relation (13) for this

model. Recognizing that only four velocity states are
possible, we expand the correlation functions as

Dk ¼ lim
t→∞

1

2
hΔriðtÞvjð0Þiδij

¼ lim
t→∞

1

8
v0½hxðtÞi→ − hxðtÞi← þ hyðtÞi↑ − hyðtÞi↓�

¼ lim
t→∞

1

2
v0hxðtÞi→; ð23Þ

where h·i→ indicates an average conditioned on the particle
initially moving to the right from the origin. The other
terms h·i↑, h·i← and h·i↓ follow the same notational
convention. The simplification on the final line is due to
isotropy. Likewise, from Eq. (14),

D⊥ ¼ lim
t→∞

1

2
v0hyðtÞi→: ð24Þ

The averages are obtained by solving Eqs. (15) through
(18) with the initial condition P→ðx; y; 0Þ ¼ δðxÞδðyÞ (see
Supplemental Material [19], Sec. A.1). In doing so, we find
that the mean trajectory is a logarithmic spiral, i.e.,

hxðtÞi→ ¼ v0
ν − e−νt½ν cosðωtÞ þ ω sinðωtÞ�

ν2 þ ω2
; ð25Þ

hyðtÞi→ ¼ v0
ω − e−νt½ω cosðωtÞ − ν sinðωtÞ�

ν2 þ ω2
; ð26Þ

where for compactness we have defined ω ¼ Γ1 − Γ3

and ν ¼ Γ1 þ 2Γ2 þ Γ3. This logarithmic spiral functional
form, shown in Fig. 1(b), is remarkably common, appear-
ing in the mean trajectories of charged particles diffusing in
a magnetic field [20,22,49,50], as well as those of chiral
active colloids [6,7] and certain biological systems [44,51].
Inserting Eqs. (25)–(26) into Eqs. (23)–(24) yields

2Dk ¼ v20
ν

ν2 þ ω2
; ð27Þ

2D⊥ ¼ v20
ω

ν2 þ ω2
; ð28Þ

in agreement with Eq. (22), showing the emergence of D⊥
when chirality is present (ω ≠ 0).
Figure 1 illustrates the origins of odd diffusivity in a

chiral random walk which permits only left turns (Γ1 ¼ 1,
Γ2 ¼ Γ3 ¼ 0), for which Dk ¼ D⊥, from Eqs. (27)–(28).
Figure 1(a) displays the steady-state solution to Eqs. (1)–
(3) for diffusion between two reservoirs with concentra-
tions Cðx ¼ 0Þ ¼ C0 and Cðx ¼ LÞ ¼ 0, resulting in a
linear concentration profile CðxÞ ¼ C0ð1 − x=LÞ and uni-
form flux J ¼ ðC0=LÞ½Dkêx þD⊥êy� with a nonzero y
component due to odd diffusivity. In the presence of
impermeable boundaries this solution must be modified,
with D⊥ affecting not only the flux but also the concen-
tration, as shown in the Supplemental Material [19],
Sec. A.1. Figure 1(b) plots the position-velocity correlation
functions entering into the Green-Kubo relations (13) and
(14). Finally, Fig. 1(c) shows a random sample from the
subensembles of time-reversed trajectoriesΔrαð−tÞ passing
through the origin at time t ¼ 0 with either vαð0Þ ¼ þv0êx
or vαð0Þ ¼ −v0êx. Because of chirality, the paths in these
two subensembles lead backwards in time to regions
differing not only in the x but also the y coordinate, so
that a gradient in the y direction generates a flux in the x
direction. This is the microscopic basis of odd diffusivity.
Diffusion in a chiral active bath.—Several recent studies

have described novel behavior of the symmetric diffusivity
Dk [52–55] as well as an antisymmetric mobility [56–59] in
active systems. In this section, we study the odd diffusivity
of a passive tracer particle dissolved in a two-dimensional
chiral active fluid composed of torqued dumbbells, which
was found in previous studies to exhibit odd viscosity and
an asymmetric hydrostatic stress [15,60]. The positions ri
and velocities vi of particle i evolve according to under-
damped Langevin dynamics
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_ri ¼ vi;

_vi ¼ −
∂
∂ri U þ fAi − ζvi þ ηi; ð29Þ

with particle masses set to one. Here, −ð∂=∂riÞU is the
conservative force on particle i due to interactions (see
Supplemental Material [19], Sec. A.2 for model and
simulation details). fAi is a nonconservative active force
inducing rotation of the dumbbell. ζ is the dissipative
bath friction and ηi are the bath fluctuations, modeled
as Gaussian white noise characterized by hηii ¼ 0 and
hηiðtÞ ⊗ ηjðt0Þi ¼ 2kBTζδijδðt − t0ÞI, where kBT is the
bath temperature and I is the identity matrix. In all simu-
lations the density of active dumbbells, ρbath, is spatially
homogeneous. The magnitude of fA ¼ jfAi j relative to
thermal fluctuations is quantified by a nondimensional
Péclet number defined as Pe ¼ ð2fAd=kBTÞ, where d is the
equilibrium dumbbell bond length.
Molecular dynamics simulations [61,62] with fully

periodic boundaries allow for the measurement of the
position-velocity correlation functions, which are plotted
in Fig. 2. We have taken the convention that Pe > 0
corresponds to clockwise rotation of the dumbbells, which
induces counterclockwise motion of the passive tracer,
as depicted in the inset of Fig. 2(b). When Pe ≠ 0, an
antisymmetric part of the correlation function appears, with
a shape resembling the logarithmic spirals identified in
the chiral random walk model [Fig. 1(b) and magnitude
depending strongly on the density of the active dumbbell
bath. The resulting Green-Kubo estimates ofD⊥ andDk are
plotted in Figs. 3(a) and 3(b) for a range of active bath
densities, where D⊥ is seen to be an odd function of Pe
while Dk is an even function of Pe.

To validate the Green-Kubo relations, we independently
performed boundary-driven flux simulations in which pas-
sive tracer particles at high dilution were introduced at the
left boundary of the simulation box and removed from the
right boundary at a constant rate, while the top and bottom
boundaries remained periodic. The resulting steady state
exhibits a uniform concentration gradient in the x direction,
and uniform flux with a y component emerging for Pe ≠ 0
(see Supplemental Material [19], Sec. A.2). The diffusion
coefficients D⊥ and Dk were then computed directly from
the constitutive relations (1) and (2). The resulting values
are plotted in Fig. 3 against the Green-Kubo predictions,
demonstrating good agreement. We note that this system
exhibits an antisymmetric part of the mobility, but with no
apparent Einstein relation connecting this quantity to the odd
diffusivity (see Supplemental Material [19], Sec. A.3).
Conclusion.—Ordinarily, isotropic diffusion involves

fluxes parallel to concentration gradients. In general,
however, there may emerge fluxes in the perpendicular
direction. This behavior appears as an antisymmetric part
of the diffusivity tensor, which we have termed odd
diffusivity. From a first-principles consideration of the
microscopic basis of the constitutive relations describing
these perpendicular fluxes, we have derived a Green-Kubo
relation for odd diffusivity, showing it to exist only when
time-reversal and parity symmetries are broken, whether in
or out of equilibrium. This approach may help to character-
ize additional odd transport phenomena with divergence-
free fluxes, such as odd heat conduction and odd couplings
between viscous and diffusive transport.
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FIG. 2. Position-velocity correlation functions computed from
molecular dynamics simulations of a passive tracer in a chiral
active dumbbell bath with density ρbath ¼ 0.4 (a) and ρbath ¼ 0.1
(b). Stars mark converged values as t → ∞. Both D⊥ and Dk
increase with Pe, as does the ratioD⊥=Dk, as indicated by dashed
lines. The inset in (b) depicts the model system.

FIG. 3. Comparison of the diffusion coefficients D⊥ (a) and Dk
(b) computed from the Green-Kubo relations (solid lines) with
those measured in boundary-driven flux simulations (dashed
lines) for several densities of the active dumbbell bath ρbath and
values of Pe. Error bars are smaller than the symbols.
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