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ABSTRACT
Active fluids, which are driven at the microscale by non-conservative forces, are known to exhibit novel transport phenomena due to the
breaking of time reversal symmetry. Recently, Epstein and Mandadapu [arXiv:1907.10041 (2019)] obtained Green–Kubo relations for the
full set of viscous coefficients governing isotropic chiral active fluids, including the so-called odd viscosity, invoking Onsager’s regression
hypothesis for the decay of fluctuations in active non-equilibrium steady states. In this Communication, we test these Green–Kubo relations
using molecular dynamics simulations of a canonical model system consisting of actively torqued dumbbells. We find the resulting odd and
shear viscosity values from the Green–Kubo relations to be in good agreement with values measured independently through non-equilibrium
molecular dynamics flow simulations. This provides a test of the Green–Kubo relations and lends support to the application of the Onsager
regression hypothesis in relation to viscous behaviors of active matter systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006441., s

INTRODUCTION

Statistical physics has traditionally been concerned with sys-
tems at equilibrium. A natural generalization pursued by Onsager,
Prigogine, de Groot and Mazur, and others is to consider sys-
tems that are globally out of equilibrium but that obey the local
equilibrium hypothesis.2–6 Such systems model transport phenom-
ena allowing linear laws, such as those of Fourier and Fick, to be
derived from the principles of equilibrium thermodynamics and sta-
tistical mechanics.4,5,7 The physical origin of the non-equilibrium
nature of these systems is driving at boundaries, as in a rod heated
from one end or a channel connecting regions of different solute
concentrations.

A more radical departure from equilibrium is achieved in active
matter systems in which equilibrium is broken at the local level
by non-conservative microscopic forces. Such activity is known to

modify existing phase behavior and give rise to qualitatively new
dynamical phases, as in motility-induced phase separation.8,9 Sim-
ilarly, activity not only modifies existing transport coefficients but
can lead to entirely new coefficients, such as the odd (or Hall)
viscosity appearing in chiral active fluids.1,10–15

Recent work by Epstein and Mandadapu1 reveals that odd
viscosity arises in two-dimensional chiral active fluids due to the
breaking of time reversal symmetry at the level of stress correla-
tions. This is demonstrated by a set of Green–Kubo relations derived
through the application of the Onsager regression hypothesis.4,5,7

In this Communication, we evaluate these Green–Kubo relations
using molecular dynamics simulations of a model system composed
of microscopically torqued dumbbells, finding them to be in good
agreement with non-equilibrium molecular dynamics (NEMD)
flow simulations across a wide range of densities and activities
(Fig. 4).
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THEORY

We begin by reviewing the continuum theory for two-
dimensional viscous active fluids with internal spin. This provides
the setting for the derivation of Green–Kubo relations for viscosity
coefficients in fluids breaking time reversal symmetry. Because the
chiral active dumbbell model considered in this paper is capable of
storing angular momentum in the form of internal (i.e. molecular)
spin, we anticipate possible coupling between a velocity field vi and
a spin field m. These satisfy balance equations for linear and angular
momentum, as proposed by Dahler and Scriven,16

ρv̇i = Tij,j + ρgi, (1)

ρṁ = Ci,i − ϵijTij + ρG. (2)

Tij denotes the stress tensor and Ci denotes the spin flux, which
accounts for transfer of internal angular momentum across surfaces.
The variables gi and G denote body forces and body torques, respec-
tively. Finally, note that the balance of angular momentum includes
a term in which the two-dimensional Levi–Civita tensor ϵij is con-
tracted with the stress so that the antisymmetric component of the
stress may be nontrivial. We use the notation a,i = ∂a/∂xi.

The most general isotropic constitutive equations for viscous
fluids relating Tij and Ci to vi, m, and their derivatives up to first
order in two-dimensional systems are given by

Tij = ηijklvk,l + γijm − pδij + p∗ϵij, (3)

Ci = αijm,j, (4)

where ηijkl, γij, and αij are the viscous transport coefficients.1 Here,
p and p∗ are hydrostatic contributions and are not constitutively
related to vi and m. The forms of Eqs. (3) and (4) follow from a gen-
eral representation theorem stating that any isotropic tensor can be
expressed in a basis consisting of contractions of Kronecker tensors
δij and Levi–Civita tensors ϵij and that, consequently, there exist no
isotropic tensors of odd rank in two dimensions. Thus, the transport
coefficients may be expressed as

ηijkl =
6

∑
n=1

λns(n)ijkl , (5)

γij = γ1δij + γ2ϵij, (6)

αij = α1δij + α2ϵij, (7)

where Table I contains the definitions of tensors s(n)ijkl .
The coefficients γn and αn indicate the responses of the stress

and spin flux tensors to spin and spin gradients. λ1 and λ2 are the
typical bulk and shear viscosities. λ3 is the rotational viscosity indi-
cating resistance to vorticity and giving rise to an anti-symmetric
stress, while λ4 is the so-called odd viscosity quantifying response
to shear with a tension or compression in the orthogonal direction.
λ5 and λ6 correspond to an anti-symmetric pressure from compres-
sion and isotropic pressure from vorticity, respectively. Note that
non-vanishing λ3 or λ6 violates objectivity (independence of stress
from vorticity), while non-vanishing λ3 or λ5 violates symmetry of
the stress tensor.

TABLE I. Basis of isotropic rank four tensors in two dimensions appearing in Eq. (5).
Adapted from Ref. 1.

Basis tensor Components

s(1) δijδkl
s(2) δikδjl − ϵikϵjl
s(3) ϵijϵkl
s(4) ϵikδjl + ϵjlδik
s(5) ϵikδjl − ϵjlδik + ϵijδkl + ϵklδij
s(6) ϵikδjl − ϵjlδik − ϵijδkl − ϵklδij

Using the conservation and constitutive Eqs. (1), (2), and (5)–
(7), Ref. 1 obtains a set of Green–Kubo relations for γn and λn via
invocation of the Onsager regression hypothesis,

γ1 = 1
2ρ0ν

δijϵklT ijkl, (8)

γ2 = 1
2ρ0ν

ϵijϵklT ijkl, (9)

λ1 + 2λ2 + λ3 − γ1π
2μ

+
γ2τ
2μ
= 1

2ρ0μ
δikδjlT ijkl, (10)

λ4 + λ5 + λ6 − γ1τ
4μ
− γ2π

4μ
= 1

4ρ0μ
ϵikδjlT ijkl, (11)

λ5 − γ2π
4μ
= 1

8ρ0μ
ϵijδklT ijkl, (12)

λ3 +
γ2τ
2μ
= 1

4ρ0μ
ϵijϵklT ijkl. (13)

T ijkl is the integrated stress correlation function given by

T ijkl = ∫
∞

0
dt⟨δTij(t)δTkl(0)⟩. (14)

Note that the stress tensor in (14) is defined as a spatial average, as
in the following section. μ, ν, τ, and π are static correlation functions
in the non-equilibrium steady state given by

μδij = 1
A2 ∫ ⟨δv

i(x)δvj(y)⟩d2xd2y, (15)

π = 1
A2 ∫ (y

i − xi)⟨δvi(x)δm(y)⟩d2xd2y, (16)

τ = 1
A2 ∫ ϵkr(yr − xr)⟨δm(x)δvk(y)⟩d2xd2y, (17)

ν = 1
A2 ∫ ⟨δm(x)δm(y)⟩d

2xd2y, (18)
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respectively, where A is the area of the system. In particular, μ and ν
can be regarded as measuring the effective translation and spin tem-
peratures in the steady state. For equilibrium systems, equipartition
implies μ = ν and π = τ = 0. Finally, the above Green–Kubo relations
show that two of the transport coefficients, λ3 and γ2, are related by
2λ3 = γ2(ν − τ)/μ.

For the chiral active dumbbell fluid, the situation is further sim-
plified. As we will show in the following sections, the absence of
alignment interactions, i.e. torque interactions acting at a distance
between misaligned dumbbells, results in γ1 = γ2 = 0, effectively
decoupling the velocity from the spin field and also setting λ3 = 0.
Moreover, symmetry and objectivity of the stress tensor sets two
more of the viscosity coefficients to zero, leaving

ηijkl = λ1(δijδkl) + λ2(δikδjl − ϵikϵjl) + λ4(ϵikδjl + ϵjlδik). (19)

These simplifications also allow us to write simplified Green–Kubo
expressions for the shear viscosity,

λ2 = 1
4ρ0μ ∫

∞

0
dt ⟨(δT22(t)−δT11(t))(δT22(0)−δT11(0))⟩, (20)

and the odd viscosity,

λ4 = 1
4ρ0μ ∫

∞

0
dt[⟨δT11(t)δT21(0)⟩ − ⟨δT11(0)δT21(t)⟩

+ ⟨δT12(t)δT22(0)⟩ − ⟨δT12(0)δT22(t)⟩], (21)

[see Appendix II in the supplementary material for separating the
coefficient λ2 from (10)]. Equation (21) shows that non-vanishing
odd viscosity, i.e. λ4 ≠ 0, requires breaking time reversal symmetry
at the level of stress correlation functions, thus breaking the Onsager
reciprocal relations.1,5 Note that (20) is not the typical Green–Kubo
expression used to calculate the shear viscosity. However, it can also
be rewritten for isotropic systems in the typical form, which are
invariant under rotation as

λ2 = 1
ρ0μ ∫

∞

0
dt ⟨δT′12(t)δT′12(0)⟩, (22)

using a transformation T′ = RTTR corresponding to a rotation R of
angle π/4, for which T′12 = 1

2(T22 − T11). The form in (20) is a result
of the theory for the choice of the representation theorem for viscous
transport coefficients using the basis s(n)ijkl .

In the following, we evaluate the shear and odd viscosity
Green–Kubo expressions at various densities and driving forces
using molecular simulations of chiral active dumbbells in a non-
equilibrium steady state. We then subject the dumbbell system to
non-uniform shearing flow and evaluate the viscosity coefficients
independently. Such an analysis will provide support to both the
application of Onsager’s regression hypothesis to fluctuations in
active non-equilibrium steady states and the ensuing Green–Kubo
relations for viscous behaviors of active systems.

MICROSCOPIC MODEL
Chiral active dumbbells

We consider a fluid composed of dumbbells subject to active
torques,17 as shown in Fig. 1. Each dumbbell is composed of two

FIG. 1. A two-dimensional fluid composed of chiral active dumbbells. In addition to
interacting with its neighbors, each dumbbell is rotated counterclockwise by equal
and opposite active forces f αi .

particles of unit mass connected by a harmonic spring. The system
evolves according to underdamped Langevin dynamics

ẋαi = vα
i ,

v̇α
i =∑

jβ
Fαβ
ij + fαi + gαi − ζvα

i + ηαi ,
(23)

with indices i, j ∈ [1, N] and α, β ∈ {1, 2} running over dumb-
bells and particles, respectively. Variables xαi and vα

i represent atom
positions and velocities. ζ is the dissipative substrate friction and
T is the substrate temperature determining the variance of the
random thermal force ηαi (t), modeled as Gaussian white noise
affecting each particle independently such that, indicating vec-
tor components with indices a and b, we have ⟨ηαia(t)ηβjb(t′)⟩
= 2kBTζδ(t − t′)δabδijδαβ. Particles in different dumbbells interact
through a pairwise Weeks-Chandler-Andersen (WCA) potential,18

resulting in interaction forces Fαβ
ij . The particles in a dumbbell are

subjected to equal and opposite non-conservative active forces fαi ,
which satisfy f1

i = −f2
i ∶= fi, and are always perpendicular to the

bond vector di = x1
i − x2

i . This imposes an active torque at the level
of individual dumbbells. Finally, gαi = g(xαi ) is an optional exter-
nally imposed body force and will be employed later in Poiseuille
flow simulations to test the Green–Kubo relations.

Previous work17 used the Irving–Kirkwood procedure to
coarse-grain the microscopic Eq. (23) and derive the equations of
hydrodynamics, including balance of mass, linear momentum, and
angular momentum, as also employed in the context of measur-
ing odd viscosity by Ref. 13. This coarse-graining procedure yields
expressions for the stress tensor in terms of molecular variables
and active forces. In particular, it is found that applying active
forces at the microscale results in an asymmetric stress tensor at the
continuum scale given by

T = TK + TV + TA, (24)

where
TK = − 1

A∑i,α
mα

i v
α
i ⊗ vα

i , (25)
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TV = − 1
2A ∑i,j,α,β

Fαβ
ij ⊗ xαβij , (26)

TA = − 1
A∑i

fi ⊗ di (27)

denote the kinetic, virial, and active contributions, respectively.
The active force vector fi is related to the unit bond vector d̂i by

a rotation R of angle π/2, i.e.,

fi = fRd̂i. (28)

For positive (negative) f, the dumbbells rotate counter-clockwise
(clockwise). We find that the steady state time average of TA is

⟨TA⟩ = −ρ0⟨f⊗ d⟩

= −ρ0fd⟨Rd̂ ⊗ d̂⟩ = ρ0fd
2
[0 1
-1 0], (29)

where d = ⟨|d|⟩ is the average bond length. Because the dumbbells
rotate with no preferred alignment, the antisymmetry of ⟨TA⟩ fol-
lows from replacing the time average with a uniformly weighted
average over angles of rotation θ. For example,

⟨Rd̂ ⊗ d̂⟩21 = ⟨d̂1d̂1⟩ = 1
2π ∫

2π

0
dθ cos2(θ) = 1

2
, (30)

while the diagonal elements are zero. This shows that the anti-
symmetric hydrostatic-like term p∗ introduced in (3) arises in a
non-equilibrium steady state of the active dumbbell model due
to the presence of active rotational forces and has the magnitude
p∗ = ρ0fd/2. We further relate p∗ to a non-dimensional Péclet
number describing the ratio of active rotational forces to thermal
fluctuations due to the substrate bath held at temperature T,

Pe = 2fd
kBT
= 4p∗

ρ0kBT
. (31)

We use Pe as defined in (31) to vary the activity in the system when
evaluating the transport coefficients.

Green–Kubo calculations

Steady-state molecular dynamics simulations19 allow direct
measurement of the integrated stress correlation functions Tijkl
defined in (14), which are required for the evaluation of the viscous
transport coefficients using the Green–Kubo Eqs. (8)–(13).20 We
find that several of these coefficients vanish in the non-equilibrium
steady states at all simulated activities and densities due to cancel-
lations of the correlation functions (see Appendix Fig. A1 in the
supplementary material). In particular,

ϵijϵklTijkl = δijϵklTijkl = ϵijδklTijkl = 0. (32)

This immediately implies γ1 = γ2 = λ3 = λ5 = λ6 = 0 so that the stress
tensor is symmetric and objective. It now remains to evaluate the two
non-trivial transport coefficients λ2 and λ4 using (20) and (21). For
these coefficients, we compute the effective translation temperature
as (Aρ0)μ = m⟨(vαi )2⟩, consistent with the stress tensor defined in
(24)–(27).

FIG. 2. Stress correlation functions contributing to the odd viscosity (ρ0 = 0.4).
For Pe ≠ 0, these correlation functions display time reversal antisymmetry, adding
constructively to yield a nonzero odd viscosity.

Figure 2 shows the stress correlation functions ⟨δT11(t)δT21(0)⟩
and ⟨δT11(0)δT21(t)⟩ for various Pe. These are typically zero for
systems in equilibrium but become nonzero in the chiral active
dumbbell fluid for Pe ≠ 0. In general, we find

⟨δT11(t)δT21(0)⟩ = −⟨δT11(0)δT21(t)⟩
= −⟨δT11(-t)δT21(0)⟩, (33)

where the final equality is due to stationarity. The analogous equa-
tions are satisfied by ⟨δT12(t)δT22(0)⟩. Due to this time reversal anti-
symmetry, these correlation functions add constructively, yielding a
non-vanishing odd viscosity from the Green–Kubo relation (21).

Figure 4 shows the Green–Kubo estimates for λ2 and λ4 for
various activities and for a range of low to high densities. We find
that the shear viscosity increases with density as well as with activ-
ity. The dependence of the odd viscosity on activity, while appar-
ently linear at low density, becomes increasingly sigmoidal at high
density. Because the sign of Pe controls the direction of active
rotation, the time reversal symmetry and antisymmetry, respec-
tively, of λ2 and λ4 in Eqs. (20) and (21) require that λ2 must be

FIG. 3. A schematic of the periodic Poiseuille non-equilibrium molecular dynamics
(NEMD) simulation method. The top half of the system is subjected to a uniform
body force to the left and the bottom half to a uniform body force of equal magni-
tude to the right. This yields a parabolic velocity profile and, for odd viscous fluids,
an atypical normal stress T11.
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FIG. 4. Comparison of shear viscosity (λ2) and odd viscosity (λ4) values obtained from the Green–Kubo relations (solid lines) with those obtained from periodic Poiseuille
NEMD simulations (dashed lines). Error bars due to sampling convergence are smaller than the symbols. Figures (a)–(d) show this comparison at densities ρ0 ∈ {0.1, 0.2,
0.4, 0.6}, respectively. Each figure scans over Pe ∈ {−16, −12, −8, −4, −2, 0, 2, 4, 8, 12, 16}.

an even function of Pe, while λ4 must be odd. Note that the odd
viscosity, as a non-dissipative transport coefficient, may be nega-
tive without introducing an inconsistency with the second law of
thermodynamics.

Poiseuille flow NEMD simulations

To verify the values computed from the Green–Kubo formu-
las, (20) and (21), we measure λ2 and λ4 independently via non-
equilibrium molecular dynamics simulations. To this end, we sim-
ulate plane Poiseuille-like flow via the inclusion of a nonzero body
force g in (23) according to the periodic Poiseuille method.21 As
depicted in Fig. 3, we apply equal and opposite uniform body forces
of magnitude g1 in the x1 direction across a rectangular channel
of width 2L, compatible with periodic boundary conditions. In the
following analysis, we consider only the bottom half of the system
depicted in Fig. 3, as the top half is symmetrically identical.

The setup in Fig. 3 represents a non-trivial boundary value
problem, which not only yields non-uniform flows and non-uniform
stresses but also provides a stringent test for the expected consti-
tutive behaviors of the active dumbbell fluid and the estimates of
the transport coefficients obtained from Green–Kubo formulas. The
velocity profile and pressure profile for flow driven by a small, uni-
form body force can be solved analytically from the continuum
theory, yielding

v1(x2) = ρ0g1

2λ2
x2(L − x2) (34)

and

p(x2) = λ4

λ2
ρ0x2g1 + p0, (35)

respectively, where p0 is an arbitrary reference pressure (see
Appendix IV in the supplementary material for the solution to
the corresponding boundary value problem). Our simulations of
active dumbbell fluids are consistent with these profiles for various
densities and activities (see Appendix Fig. A3 in the supplemen-
tary material). Given the velocity and pressure profiles in (34)

and (35), the shear and odd viscosities can be computed from the
expressions

λ2 = ρ0g1L2

12v̄
, (36)

λ4 = T11,2

2v1,22
= −λ2T11,2

2ρ0g1
, (37)

respectively, where v̄ = 1
L ∫

L
0 dx2 v1(x2) (see Appendix IV in the sup-

plementary material). The slope of the stress component T11 can
be identified in molecular simulations using the Irving–Kirkwood
expression (24)–(27).

The shear and odd viscosities calculated using this NEMD
approach are found to be in agreement with the Green–Kubo pre-
dictions for a wide range of densities and Péclet numbers (see
Fig. 4).

DISCUSSION

In this work, we have validated the non-equilibrium Green–
Kubo formulas derived in Ref. 1 using molecular dynamics simula-
tions of the chiral active dumbbell model system to show that odd
viscosity is a direct consequence of the breaking of time reversal
symmetry at the level of stress fluctuations. In doing so, we pro-
vide support for the application of the Onsager regression hypoth-
esis to fluctuations about non-equilibrium steady states, which was
used to derive these equations. Complementary work by Han et al.15

measures transport coefficients including the odd viscosity in a
different model system consisting of frictional granular particles,
upon obtaining Green–Kubo relations identical in form to Ref. 1
using a projection operator formalism and finding similar agreement
with NEMD measurements. Together with the present work, these
results suggest broad applicability of these Green–Kubo relations
in active fluids. Future work entails understanding the microscopic
origins of the functional dependence of the viscosities with density
and activity.
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SUPPLEMENTARY MATERIAL

See the Appendix in the supplementary material for details of
the simulation methodology and derivations related to the Green–
Kubo relations and Poiseuille-like flow in the presence of odd
viscosity.
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